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Organ damage and loss remain impor-
tant clinical problems, where the current 
gold standard is transplantation. One of 
the main problems with transplants, even 
when they are successful, is the need to use 
immunosuppressants (IS) for preventing 
acute rejection. The use of IS entails several 
side effects such as increased risk of tumor 
formation, higher susceptibility to infec-
tions and IS-related toxicity. Even though 
in certain cases, such as liver transplants, 
weaning off the IS has been achieved [1], in 
many transplant scenarios the use of IS is 
indispensable. This aspect was one of the 
initial promises of tissue engineering as the 
use of autologous cells and biocompatible 
biomaterials would render the use of IS 
unnecessary.

In order to prevent rejection, a strict 
donor–recipient match is necessary and 
although a high level of efficacy has been 
achieved with transplant recipients (>95% 
1-year survival rate), the increasing number 
of patients on the donor waiting lists with-
out a corresponding increase in the number 
of donated organs demonstrates the need 
for an alternative source of replacement 
organs. Moreover, beyond the donor–recipi-
ent matching, the level of long-term success 
will be dependent on the demographic data 
pertaining to donor and the donor’s medical 
history together with the reason of death. 

For example, donors for whom the reason 
of death was cerebrovascular disease have 
been shown to be more prone to induce 
rejection  [2]. Furthermore, even though the 
survival rates are high, the deterioration of 
the transplant is not completely evitable. 
T-cell mediated scarring of the allograft or 
antibody-mediated processes will still be 
active.

Immunomodulation methods beyond sys-
temic immunosuppression have been under 
development. Such technologies include 
donor regulatory T-cell therapy for promot-
ing tolerance, antibody-based approaches 
for suppression of alloreactive T cells, allo-
genic antigen presentation methods dur-
ing autologous cell debris scavenging to 
induce tolerance or low-dose IL-2 applica-
tion for increasing host-regulatory T-cell 
numbers  [3,4]. The use of biomaterials as 
immunomodulatory agents started with the 
encapsulation of allogenic Langerhans islets 
for treatment of diabetes using materials 
with low immunogenicity such as alginate. 
This provides an active barrier between the 
immune cells and antibodies of the host, and 
the metabolically active implanted allogenic 
cells. In a similar vein, biomaterial-based 
controlled delivery systems can achieve local 
control of immune response, hence circum-
venting most of the side effects of systemic 
immunomodulation [5].
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In the context of regenerative medicine, these meth-
ods can provide means to utilize allogenic cell sources 
rather than autologous cells for patients with congenital 
diseases or with compromised cell populations. More-
over, coupling of immunomodulatory agents directly 
to biomaterials to render them immunomodulatory 
biomaterials  [6] will help the development of highly 
remodelable scaffolds in vivo with regenerative proper-
ties beyond the inherent immunomodulatory activities 
of systems such as decellularized tissues [7].

Tissue engineering and regenerative medicine have 
come a long way in solving problems pertaining to 
organ/tissue loss and damage. In the last 10 years, 
more and more cases of clinical implementation of 
tissue engineering have been published with short- 
and long-term successes  [8]. Moreover, the advances 
in tissue engineering have also led to development of 
complex 3D in vitro artificial tissue and organ systems 
that are being actively improved for replacement of 
animal experiments and also as more relevant models 
for drug and pharmacological tests [9]. These successes 
give hope for design and implementation of more 
complex tissues.  For development of fully functional 
engineered tissues incorporation of immune cells or 
immunomodulatory elements might have significant 
benefits [10].

Even though tissues can be defined in a manner 
that emphasizes their specific function, barring cer-
tain exceptions, the presence of the components of 
three other systems of the body (namely, innervations, 
incoming and outgoing vasculature and resident 
immune cells) are common for all tissues. Because 
of the complexity of achieving a fully developed tis-
sue, tissue engineering research has generally focused 
on the production of tissue-like structures containing 
the main functional cells of a tissue (such as chondro-
cytes for cartilage or osteoblasts for bone) where cer-
tain tissue-specific characteristics are taken as a marker 
of tissue maturation. Even though successful differ-
entiation and microtissue formation in these settings 
can be achieved in vitro, for actual clinically relevant 
size defects, the necessity of integration with the host 
vasculature has been realized. In order to facilitate 
the integration, several different methodologies have 
been devised such as sacrificial microfluidic channels 
in scaffolds for improving capillary in-growth; addi-
tion of chemoattractants and growth factors to induce 
angiogenesis toward the implanted artificial tissue; and 
incorporation of vascular endothelial cells for prevas-
cularization  [11]. Co-culture of endothelial cells with 
other cell types generally induced not only capillary 
sprouting but also a synergistic interaction between the 
two cell types that contribute to the maturation of the 
engineered tissue.

The next in line in the sophistication of engineered 
tissues can be the inclusion of the immune system 
component. Nearly all tissues have resident macro-
phage populations which has been shown to be an 
important factor in tissue homeostasis and healing 
upon injury  [12]. Recently, there has been a growing 
focus on the control over innate immune response in 
the microenvironment of implanted materials particu-
larly through well-established macrophage polarization 
pathways that have been shown to have a crucial role 
in vascularization of implanted scaffolds [13]. Immuno
assisted tissue engineering approaches can harness the 
ability of innate immune cells to resolve inflamma-
tion and promote regeneration and healing. This can 
be achieved by exploiting the phenotypic plasticity of 
immune cells either via controlled delivery of specific 
phenotype inducing cytokines [14] or direct co-delivery 
of phenotype controlled immune cells together with 
the cells relevant to the target organ function.

A new focus on establishing a cross-talk with the 
host immune system, rather than trying to evade 
it, could pave the way for more functional and fast-
integrating artificial tissues. Concomitant use of new 
developments in temporal control of multiple growth 
factor/cytokine delivery; advanced bottom-up assem-
bly methods of engineered tissues such as robotic 
assembly  [15]; use of bioactive miRNAs within scaf-
folds; and micro/nanoscale topographical and chemi-
cal control of scaffold features [16] for inducing anti- 
or proinflammatory immune cell phenotypes would 
provide the tools for engineering multicellular organs 
and establishing in vitro organoids that faithfully 
model physiological conditions with immune sys-
tem components. These efforts would bring forth the 
aspects of ‘regenerative immunology’ in regenerative 
medicine.
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